Page 139 - Math Course 2 (Book 1)
P. 139
Factoring Binomials
Apply Several Different Factoring 3
Techniques Factor 5x – 20x.
2
A. 5x(x – 4)
Example B. (5x + 10x)(x – 2)
2
2
C. (x + 2)(5x – 10x)
D. 5x(x + 2)(x – 2)
3
2
Factor 6x + 30x – 24x – 120.
3
2
6x + 30x – 24x – 120 Original polynomial Answer
3
2
= 6(x + 5x – 4x – 20) Factor out the GCF.
2
3
= 6[(x – 4x) + (5x – 20)] Group terms with
common factors.
2
2
= 6[x(x – 4) + 5(x – 4)] Factor each Apply a Factoring Technique More Than Once
grouping.
4
Factor y – 16.
2
2
= 6(x – 4)(x + 5) x – 4 is the
2
2
common factor. A. (y + 4)(y – 4)
B. (y + 2)(y + 2)(y + 2)(y – 2)
C. (y + 2)(y + 2)(y + 2)(y + 2)
Answer 6(x + 2)(x – 2)(x + 5) D. (y + 4)(y + 2)(y – 2)
2
Answer
Your Turn!
Factor the Difference of Squares
2
Factor the binomial b – 9.
A. (b + 3)(b + 3)
B. (b – 3)(b + 1)
C. (b + 3)(b – 3)
D. (b – 3)(b – 3)
Apply Several Different Factoring Techniques
Answer
2
3
Factor 5x + 25x – 45x – 225.
2
A. 5(x – 9)(x + 5)
B. (5x + 15)(x – 3)(x + 5)
C. 5(x + 3)(x – 3)(x + 5)
D. (5x + 25)(x + 3)(x – 3)
2
2
Factor the binomial 25a – 36b .
Answer
A. (5a + 6b)(5a – 6b)
B. (5a + 6b) 2
C. (5a – 6b) 2
2
2
D. 25(a – 36b )
Answer
131

