Page 103 - Math Course 2 (Book 1)
P. 103

Polynomials: Multiplication

                  Mo. 3


                  Lesson 9




                  KEY CONCEPTS:
                  1. Multiply two polynomials by using the                      Let’s Begin
                       Distributive Property.
                  2. Multiply two binomials by using the FOIL
                       method.                                    The Distributive Property



                                                                   Examples
                MO. 3 - L9a

                     Multiplying Polynomials:                       Find (y + 8)(y – 4).

                    The Distributive Property                       Method 1       Vertical


                Key Concept                                         Multiply by –4.
                                                                    Multiply by y.
                                                                    Combine like terms.

                 FOIL Method                                                   y +   8
                                                                         (×) y –  4
                                                                          –4y – 32        –4(y + 8) = –4y – 32
                 Words    To multiply two binomials, f nd the sum   y² + 8y                  y(y + 8) = y2 + 8y
                          of the products of
                                                                    y² + 4y – 32
                          F      the First terms,
                          O      the Outer terms,                   Method 2       Horizontal
                          I      the Inner terms, and
                          L      the Last terms.
                                                                    (y + 8)(y – 4)   = y(y – 4) + 8(y –4)      Distributive
                                                                                                         Property.

                 Example    Product of  Product of  Product of  Product of                             = y(y) – y(4) + 8(y) – 8(4)
                               First    Outer    Inner    Last                                          Distributive
                              Terms    Terms     Terms    Terms                                         Property.
                   F   L        ?        ?         ?        ?
                                                                                   2
                                                                                      = y  – 4y + 8y – 32      Multiply.
                (x + 3) (x – 2) = (x) (x)   + (–2)(x)   +    (3)(x)   + (3) (–2)
                                                                                    2
                     I      = x  – 2x + 3x – 6                                                = y  + 4y – 32              Combine like
                               2
                     0                                                                                  terms.
                               2
                            = x  + x – 6
                                                                                            2
                                                                      Answer               y  + 4y – 32

                              2
                 Find (3a + 4)(a  – 12a + 1).
                          2
                 (3a + 4)(a  – 12a + 1)
                         2
                                        2
                     = 3a(a  – 12a + 1) + 4(a  – 12a + 1)          Distributive Property.
                       3
                                       2
                             2
                     = 3a  – 36a  + 3a + 4a  – 48a + 4             Distributive Property.
                       3
                     = 3a  – 32a² – 45a + 4                        Combine like terms.
                                           3
                       Answer            3a  – 32a² – 45a + 4


                                                                                                                  95
   98   99   100   101   102   103   104   105   106   107   108